Space Industry and Business News  
Heating Gold Makes It Harder Not Softer

In contrast to many other materials, heating the electrons in gold with an ultrashort laser pulse makes the forces between the ions stronger, resulting in a harder lattice with an increased melting point.
By Kim Luke
Toronto, Canada (SPX) Jan 23, 2009
Common sense tells us that when you heat something up it gets softer, but a team of researchers, led by University of Toronto chemistry and physics professor R.J. Dwayne Miller, has demonstrated the exact opposite. Their findings will be published online in the prestigious international journal Science.

"It is counter-intuitive but the gold got harder instead of softer," says Miller. Can you imagine a blacksmith heating up gold to pound it thinner, only to find it got harder? But we heated the gold at terrific heating rates - greater than 1 billion million degrees per second - that approach the temperature of the interior of stars."

The gold was heated at rates too fast for the electrons absorbing the light energy to collide with surrounding atoms and lose energy," he explains. "This means the electrons are on average further away from the atomic nucleus and there is less screening of the positive nuclear charge by these heated electrons. The bonds between atoms actually got stronger.

"A gold crystal consists of gold ions and weakly bound electrons which screen the repulsive forces between the ions," explains lead author Ralph Ernstorfer, a former postdoctoral research fellow with Prof. Miller, who is now at the Max-Planck Institute for Quantum Optics in Garching and the TU Munich, Germany. As a result, there are attractive forces between ions.

In contrast to many other materials, heating the electrons in gold with an ultrashort laser pulse makes the forces between the ions stronger, resulting in a harder lattice with an increased melting point.

"The effect of bond hardening in gold has been theoretically predicted. Now we have actually observed it for the first time," says Ernstorfer.

The researchers employed a technique called 'femtosecond electron diffraction' to make the observation. This technique can be described as a camera for making atomic-level movies. By sending femtosecond pulses of electrons through the thin gold crystal, the atomic motions of the ions were recorded in real time while heating the material with lasers. By measuring the speed of heating, amplitude of the atomic motions, and ultimate melting of the crystal, the laser-induced change of the lattice stability could be inferred.

"We now have an atomic-level view of this rarified state of matter, referred to as warm dense matter, and can relate the observed liquid structure to the increased lattice stability," says Miller.

Related Links
University of Toronto
Space Technology News - Applications and Research



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Next Generation Cloaking Device Demonstrated
Durham NC (SPX) Jan 19, 2009
A device that can bestow invisibility to an object by "cloaking" it from visual light is closer to reality. After being the first to demonstrate the feasibility of such a device by constructing a prototype in 2006, a team of Duke University engineers has produced a new type of cloaking device, which is significantly more sophisticated at cloaking in a broad range of frequencies.







  • Google Slashes Costs Boosts Profits; Microsoft Fires And Yahoo Freezes
  • China wary about the power of netizens in 2009: analysts
  • Autodesk exec Carol Bartz to become Yahoo! CEO: WSJ
  • Experience High-Speed Data Communications With ThurayaIP

  • Japan Launches Satellite To Track Greenhouse Gases
  • Japan Resets H2A Launch To Jan 23
  • First ULA Delta IV Heavy NRO Mission Successfully Lifts Off From Cape Canaveral
  • New Skies NSS-9 Satellite Arrives In Kourou For February 12 Launch

  • New Turbines Can Cut Fuel Consumption For Business Jets
  • Air China expects to post 'significant loss' for 2008
  • Nations demand climate plan from air, maritime industries
  • Heathrow expansion to get green light despite protests: reports

  • TSAT Set To Speed Up Data Rates Across The Air Force
  • Increasing Joint Battlefield Operation Effectiveness
  • Australia Chips In A Spare Quarter For Boeing Wideband Global SATCOM Bird
  • Boeing Completes Critical Design Review For FAB-T Software-Defined Radio

  • Heating Up Gold To Surprising Effect: It Gets Harder Not Softer
  • Next Generation Cloaking Device Demonstrated
  • Raytheon Sensor Passes Space Simulation Test
  • Lockheed Martin Begins Key Test Of First SBIRS Geo Satellite With New Flight Software

  • Stevens New Director Of Communications And Public Outreach For Space Foundation
  • ATK Appoints Blake Larson To Lead Space Systems Group
  • Berndt Feuerbacher New President Of IAU
  • Orbital Appoints Frank Culbertson And Mark Pieczynski To Management

  • Advanced Polar Operational Environmental Satellite Ready For Launch
  • ABB Interferometer To Blast Into Space Aboard The IBUKI (GOSAT) Satellite
  • GeoEye-1 Earth Imaging Satellite Captures Inaugural Celebration From Space
  • First Global Hawk Unmanned System For Environmental Science Research

  • Garmins nuvi 885T Combines Most Popular Features
  • Cobra's 2009 Radar Detectors
  • NAVIGON Expands Pool Of Downloadable Content For Its GPS Navigators
  • GPS OCX Team Reviews GPS Control Segment

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement