Space Industry and Business News  
Harvard University Engineers Demonstrate Quantum Cascade Laser Nanoantenna

Quantum cascade (QC) lasers were invented and first demonstrated by Capasso and his group at Bell Labs in 1994. These compact millimeter length semiconductor lasers, which are now commercially available, are made by stacking nanometer thick layers of semiconductor materials on top of each other. By varying the thickness of the layers one can select the wavelength of the QC laser across essentially the entire infrared spectrum where molecules absorb, thus custom designing it for a specific application.
by Staff Writers
Cambridge MA (SPX) Oct 23, 2007
In a major feat of nanotechnology engineering researchers from Harvard University have demonstrated a laser with a wide-range of potential applications in chemistry, biology and medicine. Called a quantum cascade (QC) laser nanoantenna, the device is capable of resolving the chemical composition of samples, such as the interior of a cell, with unprecedented detail.

Spearheaded by graduate students Nanfang Yu, Ertugrul Cubukcu, and Federico Capasso, Robert L. Wallace Professor of Applied Physics, all of Harvard's School of Engineering and Applied Sciences, the findings will be published as a cover feature of the October 22 issue of Applied Physics Letters. The researchers have also filed for U.S. patents covering this new class of photonic devices.

The laser's design consists of two gold rods separated by a nanometer gap (a device known as an optical antenna) built on the facet of a quantum cascade laser, which emits invisible light in the region of the spectrum where most molecules have their tell tale absorption fingerprints. The nanoantenna creates a light spot of nanometric size about fifty to hundred times smaller than the laser wavelength; the spot can be scanned across a specimen to provide chemical images of the surface with superior spatial resolution.

"There's currently a major push to develop powerful tabletop microscopes with spatial resolution much smaller than the wavelength that can provide images of materials, and in particular biological specimens, with chemical information on a nanometric scale," says Federico Capasso.

While infrared microscopes, based on the detection of molecular absorption fingerprints, are commercially available and widely used to map the chemical composition of materials, their spatial resolution is limited by the range of available light sources and optics to well above the wavelength. Likewise the so-called near field infrared microscopes, which rely on an ultra sharp metallic tip scanned across the sample surface at nanometric distances, can provide ultrahigh spatial resolution but applications are so far strongly limited by the use of bulky lasers with very limited tunability and wavelength coverage.

"By combining Quantum Cascade Lasers with optical antenna nanotechnology we have created for the first time an extremely compact device that will enable the realization of new ultrahigh spatial resolution microscopes for chemical imaging on a nanometric scale of a wide range of materials and biological specimens," says Capasso.

Quantum cascade (QC) lasers were invented and first demonstrated by Capasso and his group at Bell Labs in 1994. These compact millimeter length semiconductor lasers, which are now commercially available, are made by stacking nanometer thick layers of semiconductor materials on top of each other. By varying the thickness of the layers one can select the wavelength of the QC laser across essentially the entire infrared spectrum where molecules absorb, thus custom designing it for a specific application. In addition by suitable design the wavelength of a particular QCL can be made widely tunable. The range of applications of QC laser based chemical sensors is very broad, including pollution monitoring, chemical sensing, medical diagnostics such as breath analysis, and homeland security.

The teams co-authors are Kenneth Crozier, Assistant Professor of Electrical Engineering, and research associates Mikhail Belkin and Laurent Diehl, all of Harvard's School of Engineering and Applied Sciences; David Bour, Scott Corzine, and Gloria Hofler, all formerly with Agilent Technologies. The research was supported by the Air Force Office of Scientific Research and the National Science Foundation. The authors also acknowledge the support of two Harvard-based centers, the Nanoscale Science and Engineering Center and the Center for Nanoscale Systems, a member of the National Nanotechnology Infrastructure Network.

Related Links
Harvard University
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Finding Opens Path For Designing Novel Complex Oxide Nanomaterials
Fayetteville AR (SPX) Oct 16, 2007
A University of Arkansas researcher and his colleagues have found a novel way to "look" at atomic orbitals, and have directly shown for the first time that they change substantially when interacting at the interface of a ferromagnet and a high-temperature superconductor. This finding opens up a new way of designing nanoscale superconducting materials and fundamentally changes scientific convention, which suggests that only electron spin and atomic charge - not atomic orbitals - influence the properties of superconducting nanostructures. It also has implications for interfaces between other complex oxide materials.







  • Google revs up profits as advertising revenues soar
  • Internet preparing to go into outer space
  • US cities' Wi-Fi dreams fading fast
  • Digital Dandelions: The Flowering Of Network Research

  • ILS Proton Launch Scheduled In November For SES SIRIUS 4 Satellite
  • Successful Ariane 5 Upper Stage Engine Re-Ignition Experiment
  • United Launch Alliance Managed Delta 2 Launches New GPS For US Air Force
  • ATK Propulsion And Composite Technologies Help Launch GPS Satellite

  • Third Maritime Surveillance System For Canada
  • Airbus US boss demands end to WTO "histrionics"
  • MEPs seek limits on aircraft emissions by 2010
  • Aircraft And Automobiles Thrive In Hurricane-Force Winds At Lockheed Martin

  • Northrop Grumman Introduces New Geospatial Data Appliance For Defense And Intelligence Operations
  • Raytheon JPS Communications Collaborates With Cisco To Provide Interoperability Solution
  • Boeing Awarded Contract To Integrate F-22 Into UAF Distributed Mission Operations Training Network
  • Raytheon Sensor Netting Technology Contract

  • MIT Gel Changes Color On Demand
  • GKN Aerospace And FMW Composite Systems Combine For First Use Of TMMC Material On A Commercial Aircraft Programme
  • Radyne's AeroAstro To Upgrade Globalstar's Messaging Capacity
  • Special vest lets players feel video game blows

  • Dr Mary Cleave Appointed To Board Of Directors Of Sigma Space
  • Northrop Grumman Appoints GPS And Military Space VPs
  • Boeing Names Scott Fancher Missile Defense Systems VP And GM
  • CNP Powers Up Advanced Technology Suite To Improve Selection Board Process

  • A Roadmap For Calibration And Validation
  • GeoEye Contract With ITT Begins Phased Procurement Of The GeoEye-2 Satellite
  • Key Found To Moonlight Romance
  • ITT Sensors Aboard DigitalGlobe's WorldView-1 Satellite Capture First High-Res Images

  • Another GPS Satellite Successfully Launched
  • Science And Galileo - Working Together
  • Modernized GPS Built By Lockheed Martin Ready For Launch From Cape Canaveral
  • Krasnoyarsk Hosts GLONASS Development Conference

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement