Space Industry and Business News  
Easy Assembly Of Electronic Biological Chips

These nanowires, tagged with DNA are assembled, and have been exposed to complementary DNA that is tagged with fluorescent dyes. The complementary DNA attached to the nanowires showing that the wires assembled in the proper locations. Credit: Penn State
by Staff Writers
University Park PA (SPX) Jan 20, 2009
A handheld, ultra-portable device that can recognize and immediately report on a wide variety of environmental or medical compounds may eventually be possible, using a method that incorporates a mixture of biologically tagged nanowires onto integrated circuit chips, according to Penn State researchers.

"Probably one of the most important things for connecting to the circuit is to place the wires accurately," says Theresa S. Mayer, professor of electrical engineering and director of Penn State's Nanofabrication Laboratory.

"We need to control spatial placement on the chip with less than a micron of accuracy."

Using standard chip manufacturing, each type of nanowire would be placed on the board in a separate operation. Using the researchers' bottom-up method, they can place three different types of DNA-coated wires where they wanted them, with an error rate of less than 1 percent.

"This approach can be used to simultaneously detect different pathogens or diseases based on their nucleic acid signatures," says Christine D. Keating, associate professor of chemistry.

"Device components such as nanowires can be synthesized from many different materials and even coated with biological molecules prior to assembling them onto a chip," the researchers note in today's (Jan. 16) issue of Science. They add that positioning the nanowires accurately is still difficult using conventional methods.

Using their assembly method, the researchers can place specific nanowires in assigned areas. They begin with a chip with tiny rectangular depressions in the places they wish to place the nanowires. They then apply an electrical field between electrodes that define the area where they want the nanowires to assemble.

The Penn State researchers inject a mixture of the tagged nanowires and a liquid over the top of the chip. The nanowires are attracted to the area with an electric field and they fall into the proper tiny wells.

"We do not need microfluidic channels to control where each nanowire type goes," says Mayer. "We can run the solution over the whole chip and its wires will only attach where they are supposed to attach. This is important for scale-up."

The researchers then move the electric field and position the next tagged nanowires. In this proof-of-concept experiment, the different tagged wires were placed in rows, but the researchers say that they could be placed in a variety of configurations.

After all the wires are in place, they can be made into a variety of devices including resonators or field effect transistors that can be used to detect nucleic acid targets.

While the researchers have not yet connected each individual device to the underlying circuitry, they did test their chip to ensure that the wires assembled in the proper locations.

They immersed the chip in a solution containing DNA sequences complementary to the three virus-specific sequences on the nanowires. Because they tagged the complimentary DNA with three differently colored fluorescent dyes, the attached DNA showed that the wires were in the proper places.

The researchers believe that their assembly method is extremely flexible, capable of placing a variety of conducting and non-conducting wires with a wide array of coatings.

"The eventual idea would be to extend the method to more nanowire types, such as different DNA sequences or even proteins, and move from fluorescence to real-time electrical detection on the chip," says Keating.

Related Links
Penn State
Nano Technology News From SpaceMart.com
Computer Chip Architecture, Technology and Manufacture



Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News


Nanoparticles Used To Make 3-D DNA Nanotubes
Tuscon AZ (SPX) Jan 04, 2009
Arizona State University researchers Hao Yan and Yan Liu imagine and assemble intricate structures on a scale almost unfathomably small. Their medium is the double-helical DNA molecule, a versatile building material offering near limitless construction potential.







  • China wary about the power of netizens in 2009: analysts
  • Autodesk exec Carol Bartz to become Yahoo! CEO: WSJ
  • Experience High-Speed Data Communications With ThurayaIP
  • New Yahoo! CEO a no-nonsense Silicon Valley veteran

  • First ULA Delta IV Heavy NRO Mission Successfully Lifts Off From Cape Canaveral
  • New Skies NSS-9 Satellite Arrives In Kourou For February 12 Launch
  • Sea Launch Selected To Launch Intelsat 17
  • Malfunctioning Component Delays Satellite Launch

  • Air China expects to post 'significant loss' for 2008
  • Nations demand climate plan from air, maritime industries
  • Heathrow expansion to get green light despite protests: reports
  • Cathay defers completion of new cargo terminal due to downturn

  • Australia Chips In A Spare Quarter For Boeing Wideband Global SATCOM Bird
  • Boeing Completes Critical Design Review For FAB-T Software-Defined Radio
  • Boeing Increases Capability Of On-Orbit US Navy Satellite
  • Boeing Develops Common Software To Reduce Risk For TSAT

  • Next Generation Cloaking Device Demonstrated
  • Raytheon Sensor Passes Space Simulation Test
  • Lockheed Martin Begins Key Test Of First SBIRS Geo Satellite With New Flight Software
  • Princeton Researchers Discover New Type Of Laser

  • Stevens New Director Of Communications And Public Outreach For Space Foundation
  • ATK Appoints Blake Larson To Lead Space Systems Group
  • Berndt Feuerbacher New President Of IAU
  • Orbital Appoints Frank Culbertson And Mark Pieczynski To Management

  • Landmark Year Ahead For Earth Observation Science Missions
  • Satellite to keep eye on Ecuadoran turtle
  • Mapping In A One Meter Sea Level Rise
  • DMCii and DynAgra Help Farmers Control Costs And Boost Yields

  • China To Have Global Satellite Navigation System By 2015
  • ecoRoute From Garmin Helps Lessen Carbon Footprint Of Cars
  • Samsungs Processor Powers Lowrance HDS Series Of GPS-Chartplotter And Fishfinder Systems
  • Tele Atlas Maps Featured In New Mio Devices

  • The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement