Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
ELASTx Stretches Potential for Future Communications Technologies
by Staff Writers
Washington DC (SPX) Jul 03, 2014


DARPA's Efficient Linearized All-Silicon Transmitter ICs (ELASTx) program recently demonstrated an all-silicon, microchip-sized transmitter-a system on a chip (SoC)-that operates at 94 GHz. This accomplishment marks the first time a silicon-only SoC has achieved such a high frequency, which falls in the millimeter-wave range used for many military applications, such as radar, guidance systems and communications.

Many existing compact, high-data-rate millimeter-wave wireless communications systems use integrated circuits (ICs) made with gallium arsenide (GaAs) or gallium nitride (GaN). These circuits provide high power and efficiency in small packages but are costly to produce and difficult to integrate with silicon electronics that provide most other radio functions.

Silicon ICs are less expensive to manufacture in volume than those with gallium compounds but until now have not demonstrated sufficient power output and efficiency at millimeter-wave frequencies used for communications and many other military applications, such as radar and guidance systems.

Researchers with DARPA's Efficient Linearized All-Silicon Transmitter ICs (ELASTx) program recently demonstrated an all-silicon, microchip-sized transmitter-a system on a chip (SoC)-that operates at 94 GHz. This accomplishment marks the first time a silicon-only SoC has achieved such a high frequency, which falls in the millimeter-wave range.

"What normally would require multiple circuit boards, separate metal shielded assemblies and numerous I/O cables we can now miniaturize onto one silicon chip about half the size of an adult's thumbnail," said Dev Palmer, DARPA program manager.

"This accomplishment opens the door for co-designing digital CMOS [complementary metal oxide semiconductors] and millimeter-wave capabilities as an integrated system on an all-silicon chip, which should also make possible new design architectures for future military RF systems."

The all-silicon SoC transmitter uses a digitally assisted power amplifier that dynamically adapts amplifier performance characteristics to changing signal requirements. This capability allows for simultaneous optimization of efficiency and linearity-a key goal of all transmitters and power amplifiers designed to quickly deliver large amounts of data on the emerging, net-dependent battlefield.

"This SoC can support a range of modulation formats, so it's possible to communicate to multiple systems using different waveforms from a single silicon chip," Palmer said.

"Its efficient silicon construction will significantly reduce SWAP [size, weight, and power] requirements for millimeter-wave applications, including compact satellite communications ground terminals for frontline troops. These new capabilities will provide connectivity to more service members faster and at lower cost."

The DARPA performer for the all-silicon SoC is Northrop Grumman Aerospace Systems.

.


Related Links
DARPA
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle




Memory Foam Mattress Review
Newsletters :: SpaceDaily :: SpaceWar :: TerraDaily :: Energy Daily
XML Feeds :: Space News :: Earth News :: War News :: Solar Energy News





TECH SPACE
NOAA GOES-R Satellite Black Wing Ready for Flight
Washington DC (SPX) Jun 30, 2014
The solar array that will provide power to NOAA's GOES-R satellite has been tested, approved and shipped to a facility where it will be incorporated on the spacecraft. The five sections of the solar array come together as one to resemble a giant black wing. On May 13, 2014, the GOES-R satellite solar array panels were successful deployed in a Lockheed Martin clean room in Sunnyvale, Califo ... read more


TECH SPACE
Whale of a target: harpooning space debris

Raytheon touts blimp-borne radar system

NOAA GOES-R Satellite Black Wing Ready for Flight

Ghost writing the whip

TECH SPACE
Thales enhancing communications of EU peacekeepers

Exelis enhancing communications for NATO country

Chemring integrates new system with Resolve

Northrop Grumman Receives Funding for Electronic Warfare Systems for US Army and Navy

TECH SPACE
Indian rocket launch delayed three minutes to avoid space debris

Indian launches PSLV C-23 rocket carrying five foreign satellites

NASA's sounding rocket crashes into Atlantic

NASA aborts launch of OCO-2

TECH SPACE
US Refusal to Host Russian Navigation Stations Political

Soyuz Rocket puts Russian GLONASS-M navigation satellite into orbit

Russia may join forces with China to compete with US, European satnavs

Russia Says GLONASS Accuracy Could Be Boosted to Two Feet

TECH SPACE
Unrest in Iraq could delay delivery of US F-16s

South Korean jets arrive for modernization

High-tech hot air balloon floats to 120,000 feet

200th production NH90 delivered to Belgium

TECH SPACE
Move Over, Silicon, There's a New Circuit in Town

Swell new sensors

Ultra-thin wires for quantum computing

Quantum computation: Fragile yet error-free

TECH SPACE
Shifting land won't stop your journey

NASA's OCO-2 Will Track Our Impact on Airborne Carbon

Norway Gets TerraSAR-X Direct Receiving Station

New NASA Images Highlight US Air Quality Improvement

TECH SPACE
Moths and other pollinators have trouble finding food amid vehicle exhaust

Pollution blamed for drop in Beijing tourism: Xinhua

Greenpeace left red-faced after top official travel expose

Malaysian police detain Australian activist




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.