Subscribe free to our newsletters via your
. Space Industry and Business News .




TECH SPACE
Discovery of new material state counterintuitive to laws of physics
by Staff Writers
Lemont IL (SPX) Jun 17, 2013


"It's like squeezing a stone and forming a giant sponge," said Argonne chemist Karena Chapman. "Materials are supposed to become denser and more compact under pressure. We are seeing the exact opposite."

When you squeeze something, it gets smaller. Unless you're at Argonne National Laboratory. At the suburban Chicago laboratory, a group of scientists has seemingly defied the laws of physics and found a way to apply pressure to make a material expand instead of compress/contract.

"It's like squeezing a stone and forming a giant sponge," said Karena Chapman, a chemist at the U.S. Department of Energy laboratory. "Materials are supposed to become denser and more compact under pressure. We are seeing the exact opposite. The pressure-treated material has half the density of the original state. This is counterintuitive to the laws of physics."

Because this behavior seems impossible, Chapman and her colleagues spent several years testing and retesting the material until they believed the unbelievable and understood how the impossible could be possible. For every experiment, they got the same mind-bending results.

"The bonds in the material completely rearrange," Chapman said. "This just blows my mind."

This discovery will do more than rewrite the science text books; it could double the variety of porous framework materials available for manufacturing, health care and environmental sustainability.

Scientists use these framework materials, which have sponge-like holes in their structure, to trap, store and filter materials. The shape of the sponge-like holes makes them selectable for specific molecules, allowing their use as water filters, chemical sensors and compressible storage for carbon dioxide sequestration of hydrogen fuel cells.

By tailoring release rates, scientists can adapt these frameworks to deliver drugs and initiate chemical reactions for the production of everything from plastics to foods.

"This could not only open up new materials to being porous, but it could also give us access to new structures for selectability and new release rates," said Peter Chupas, an Argonne chemist who helped discover the new materials.

The team published the details of their work in the May 22 issue of the Journal of the American Chemical Society in an article titled "Exploiting High Pressures to Generate Porosity, Polymorphism, And Lattice Expansion in the Nonporous Molecular Framework Zn(CN)2 ."

The scientists put zinc cyanide, a material used in electroplating, in a diamond-anvil cell at the Advanced Photon Source (APS) at Argonne and applied high pressures of 0.9 to 1.8 gigapascals, or about 9,000 to 18,000 times the pressure of the atmosphere at sea level. This high pressure is within the range affordably reproducible by industry for bulk storage systems.

By using different fluids around the material as it was squeezed, the scientists were able to create five new phases of material, two of which retained their new porous ability at normal pressure. The type of fluid used determined the shape of the sponge-like pores.

This is the first time that hydrostatic pressure has been able to make dense materials with interpenetrated atomic frameworks into novel porous materials. Several series of in situ high-pressure X-ray powder diffraction experiments were performed at the 1-BM, 11-ID-B, and 17-BM beamlines of the APS to study the material transitions.

"By applying pressure, we were able to transform a normally dense, nonporous material into a range of new porous materials that can hold twice as much stuff," Chapman said.

"This counterintuitive discovery will likely double the amount of available porous framework materials, which will greatly expand their use in pharmaceutical delivery, sequestration, material separation and catalysis."

The scientists will continue to test the new technique on other materials.

.


Related Links
Advanced Photon Source
Space Technology News - Applications and Research






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








TECH SPACE
Filmmaking magic with polymers
Akron OH (SPX) Jun 14, 2013
Think about windows coated with transparent film that absorbs harmful ultraviolet sunrays and uses them to generate electricity. Consider a water filtration membrane that blocks viruses and other microorganisms from water, or an electric car battery that incorporates a coating to give it extra long life between charges. The self-assembled copolymer block film that makes it all possible is ... read more


TECH SPACE
LONGBOW Receives Contract for Saudi Arabia Apache Radar Systems

China supercomputer world's fastest: report

Water is no lubricant

Discovery of new material state counterintuitive to laws of physics

TECH SPACE
Upgrade for French AWACs

Northrop Grumman Delivers Second Hosted Payload for Enhanced Polar System

Lockheed Martin Supports Realtime Battlespace View For USAF Aerial War Games

Mutualink Platform to be Deployed by US DoD during JUICE 2013

TECH SPACE
INSAT-3D is delivered to French Guiana for Arianespace's next Ariane 5 launch

A dream launch for Shenzhou X

Mitsubishi Heavy and Arianespace conclude MOU on commercial launches

Sea Launch IS-27 FROB Report Complete

TECH SPACE
TMC Design to integrate Non-GPS Based Positioning System at White Sands Missile Range

Proba-V tracking aircraft in flight from orbit

SSTL completes delivery of first four Galileo FOC satellite payloads

Russia Set to Launch Four GLONASS Satellites This Year

TECH SPACE
S. Korea opens bidding on $7.3 bn fighter jet deal

Long-awaited A400M military plane sets out to conquer

US gives Israeli minister a ride in V-22 Osprey aircraft

Beechcraft issues statement on LAS dispute

TECH SPACE
New Additive Offers Near-Perfect Results as Nucleating Agent for Organic Semiconductors

First large-scale production of III-V semiconductor nanowire

2-D electronics take a step forward

Study suggests second life for possible spintronic materials

TECH SPACE
Lost medieval city found in Cambodia: report

SMOS maps record soil water before flood

Landsat Satellite Looks Back at El Paso, Forward to a New Mission

NASA Builds Sophisticated Earth-Observing Microwave Radiometer

TECH SPACE
Oldest record of human-caused lead pollution detected

China seen facing uphill struggle against pollution

Blackened lives in Philippine charcoal field

China to hold local leaders responsible for air quality




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement