. | . |
|
. |
by Staff Writers Berlin, Germany (SPX) Aug 25, 2011
An international team of researchers from France and Germany has developed a new material which is the first to react magnetically to electrical fields at room temperature. Previously this was only at all possible at extremely low and unpractical temperatures. Electric fields are technically much easier and cheaper to produce than magnetic fields for which you need power guzzling coils. The researchers have now found a way to control magnetism using electric fields at "normal" temperatures, thus fulfilling a dream. The high-precision experiments were made possible in a highly specialized measuring chamber built by the Ruhr-Universitat Bochum at the Helmholtz Centre in Berlin. The research group from Paris and Berlin with the participation of RUB scientists reported on their findings in "Nature Materials".
ALICE in wonderland With the newly discovered material properties of BaTiO3 (barium-titanium oxide), in future it will be possible to design components such as data storage and logical switches that are controlled with electric instead of magnetic fields.
Ferromagnetic and ferroelectric properties
Multiferroic at room temperature Thus, the researchers have developed the world's first multiferroic material that reacts to both magnetic and electric fields at room temperature.
Magnetic X-ray scattering throws light on new control mechanism With this method, the researchers were able to show that all three elements in the ferroelectric material - bismuth, oxygen and titanium - react ferromagnetically at the interface to iron, although these atoms are otherwise not magnetic.
An extremely sophisticated method "The high precision of the detectors and all the goniometers in the chamber led to the success of the experiments conducted by the international measuring team."
|
. |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2011 - Space Media Network. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement |