Chaogates Hold Promise For The Semiconductor Industry
Washington DC (SPX) Nov 23, 2010 In a move that holds great significance for the semiconductor industry, a team of researchers has created an alternative to conventional logic gates, demonstrated them in silicon, and dubbed them "chaogates." The researchers present their findings in Chaos, a journal published by the American Institute of Physics. Simply put, they used chaotic patterns to encode and manipulate inputs to produce a desired output. They selected desired patterns from the infinite variety offered by a chaotic system. A subset of these patterns was then used to map the system inputs (initial conditions) to their desired outputs. It turns out that this process provides a method to exploit the richness inherent in nonlinear dynamics to design computing devices with the capacity to reconfigure into a range of logic gates. The resulting morphing gates are chaogates. "Chaogates are the building block of new, chaos-based computer systems that exploit the enormous pattern formation properties of chaotic systems for computation," says William Ditto, an inventor of chaos-based computing and director of the School of Biological Health Systems Engineering at Arizona State University. "Imagine a computer that can change its own internal behavior to create a billion custom chips a second based on what the user is doing that second - one that can reconfigure itself to be the fastest computer for that moment, for your purpose." This program is already underway at ChaoLogix, a semiconductor company founded by Ditto and colleagues, headquartered in Gainsville, Florida, into commercial prototypes that could potentially go into every type of consumer electronic device. It has some added advantages for gaming, Ditto explains, as well as for secure computer chips (it is possibly much more immune to hacking of information at the hardware level than conventional computer chips) and custom, morphable gaming chips. And just as important, integrated circuits using chaogates can be manufactured using the same fabrication, assembly and test facilities as those already in use today. Significantly, these integrated circuits can incorporate standard logic, memory and chaogates on the same device. The article, "Chaogates: morphing logic gates designed to exploit dynamical patterns" by William L. Ditto, A. Miliotis, K. Murali, Sudeshna Sinha, and Mark L. Spano appears in the journal Chaos.
Share This Article With Planet Earth
Related Links American Institute of Physics Computer Chip Architecture, Technology and Manufacture Nano Technology News From SpaceMart.com
Caltech Physicists Demonstrate A Four-Fold Quantum Memory Pasadena CA (SPX) Nov 18, 2010 Researchers at the California Institute of Technology (Caltech) have demonstrated quantum entanglement for a quantum state stored in four spatially distinct atomic memories. Their work, described in the November 18 issue of the journal Nature, also demonstrated a quantum interface between the atomic memories-which represent something akin to a computer "hard drive" for entanglement-and fou ... read more |
|
The content herein, unless otherwise known to be public domain, are Copyright 1995-2010 - SpaceDaily. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement,agreement or approval of any opinions, statements or information provided by SpaceDaily on any Web page published or hosted by SpaceDaily. Privacy Statement |