Subscribe free to our newsletters via your
. Space Industry and Business News .




CHIP TECH
Can our computers continue to get smaller and more powerful?
by Staff Writers
Washington DC (SPX) Aug 18, 2014


Advanced techniques such as "structured placement," shown here and developed by Markov's group, are currently being used to wring out optimizations in chip layout. Different circuit modules on an integrated circuit are shown in different colors. Algorithms for placement optimize both the locations and the shapes of modules; some nearby modules can be blended when this reduces the length of the connecting wires. Image courtesy Jin Hu, Myung-Chul Kim, Igor L. Markov (University of Michigan).

From their origins in the 1940s as sequestered, room-sized machines designed for military and scientific use, computers have made a rapid march into the mainstream, radically transforming industry, commerce, entertainment and governance while shrinking to become ubiquitous handheld portals to the world.

This progress has been driven by the industry's ability to continually innovate techniques for packing increasing amounts of computational circuitry into smaller and denser microchips. But with miniature computer processors now containing millions of closely-packed transistor components of near atomic size, chip designers are facing both engineering and fundamental limits that have become barriers to the continued improvement of computer performance.

Have we reached the limits to computation?

In a review article in this week's issue of the journal Nature, Igor Markov of the University of Michigan reviews limiting factors in the development of computing systems to help determine what is achievable, identifying "loose" limits and viable opportunities for advancements through the use of emerging technologies. His research for this project was funded in part by the National Science Foundation (NSF).

"Just as the second law of thermodynamics was inspired by the discovery of heat engines during the industrial revolution, we are poised to identify fundamental laws that could enunciate the limits of computation in the present information age," says Sankar Basu, a program director in NSF's Computer and Information Science and Engineering Directorate.

"Markov's paper revolves around this important intellectual question of our time and briefly touches upon most threads of scientific work leading up to it."

The article summarizes and examines limitations in the areas of manufacturing and engineering, design and validation, power and heat, time and space, as well as information and computational complexity.?

"What are these limits, and are some of them negotiable? On which assumptions are they based? How can they be overcome?" asks Markov. "Given the wealth of knowledge about limits to computation and complicated relations between such limits, it is important to measure both dominant and emerging technologies against them."

Limits related to materials and manufacturing are immediately perceptible. In a material layer ten atoms thick, missing one atom due to imprecise manufacturing changes electrical parameters by ten percent or more. Shrinking designs of this scale further inevitably leads to quantum physics and associated limits.

Limits related to engineering are dependent upon design decisions, technical abilities and the ability to validate designs. While very real, these limits are difficult to quantify. However, once the premises of a limit are understood, obstacles to improvement can potentially be eliminated. One such breakthrough has been in writing software to automatically find, diagnose and fix bugs in hardware designs.

Limits related to power and energy have been studied for many years, but only recently have chip designers found ways to improve the energy consumption of processors by temporarily turning off parts of the chip. There are many other clever tricks for saving energy during computation. But moving forward, silicon chips will not maintain the pace of improvement without radical changes. Atomic physics suggests intriguing possibilities but these are far beyond modern engineering capabilities.

Limits relating to time and space can be felt in practice. The speed of light, while a very large number, limits how fast data can travel. Traveling through copper wires and silicon transistors, a signal can no longer traverse a chip in one clock cycle today.

A formula limiting parallel computation in terms of device size, communication speed and the number of available dimensions has been known for more than 20 years, but only recently has it become important now that transistors are faster than interconnections. This is why alternatives to conventional wires are being developed, but in the meantime mathematical optimization can be used to reduce the length of wires by rearranging transistors and other components.

Several key limits related to information and computational complexity have been reached by modern computers. Some categories of computational tasks are conjectured to be so difficult to solve that no proposed technology, not even quantum computing, promises consistent advantage. But studying each task individually often helps reformulate it for more efficient computation.

When a specific limit is approached and obstructs progress, understanding the assumptions made is key to circumventing it. Chip scaling will continue for the next few years, but each step forward will meet serious obstacles, some too powerful to circumvent.

What about breakthrough technologies? New techniques and materials can be helpful in several ways and can potentially be "game changers" with respect to traditional limits. For example, carbon nanotube transistors provide greater drive strength and can potentially reduce delay, decrease energy consumption and shrink the footprint of an overall circuit.

On the other hand, fundamental limits--sometimes not initially anticipated--tend to obstruct new and emerging technologies, so it is important to understand them before promising a new revolution in power, performance and other factors.

"Understanding these important limits," says Markov, "will help us to bet on the right new techniques and technologies."

.


Related Links
National Science Foundation (NSF)
Computer Chip Architecture, Technology and Manufacture
Nano Technology News From SpaceMart.com






Comment on this article via your Facebook, Yahoo, AOL, Hotmail login.

Share this article via these popular social media networks
del.icio.usdel.icio.us DiggDigg RedditReddit GoogleGoogle








CHIP TECH
Graphene-based planar micro-supercapacitors for on-chip energy storage
Mainz, Germany (SPX) Aug 18, 2014
The rapid development of miniaturized portable electronic devices, such as micro-electromechanical systems, microrobots and implantable medical devices, has stimulated intense demand for micro-scale power sources. Although miniaturized micro-batteries that store energy by redox reactions provide the most frequently used micro-power source for current portable electronics on chip, their lim ... read more


CHIP TECH
Robotic-assisted imaging will help in daily hospital practice

The Future of CubeSats

Lockheed taps GenDyn unit for Space Fence ground equipment structures

New F-16 configuration features AESA radar

CHIP TECH
General Hyten takes control of AFSPC

3 SOPS bids farewell to oldest DSCS satellite

Next gen satellite to be tested during Arctic Shield 2014

Saudis seek to upgrade AWAC planes

CHIP TECH
Aerojet Rocketdyne Supports Fifth Successful Launch in Six Weeks

Optus 10 delivered to French Guiana for Ariane 5 Sept launch

SpaceX to build world's first commercial rocket launch site in south Texas

Ariane 5 is readied for Arianespace's September launch with MEASAT-3b and Optus 10

CHIP TECH
Twin Galileos meet, ready for Thursday's launch

Arianespace Soyuz ready to launch European GPS satellites

First operational Galileo GPS satellites integrated for Soyuz launch

Payload Integration Begins For Next Arianespace Soyuz Galileo Launch

CHIP TECH
Northrop Grumman Developing XS-1 Spaceplane For DARPA

Flight Test Preparations Draw on Launch Services Program's Expertise

Airborne Systems supplying decoys to New Zealand

Bodies of two pilots found after fighter jets crash in Italy

CHIP TECH
Can our computers continue to get smaller and more powerful?

Electrical engineers take major step toward photonic circuits

'Cavity protection effect' helps to conserve quantum information

Could hemp nanosheets topple graphene for making the ideal supercapacitor?

CHIP TECH
NMR Using Earth's Magnetic Field

How much do climate patterns influence predictability across the United States?

NOAA analysis reveals significant land cover changes in US coastal regions

DigitalGlobe Announces Launch of WorldView-3

CHIP TECH
Mexico closes 80 schools after chemical leak

Mexico acid leak leaves orange river, toxic water

India's top court raps Modi government over filthy Ganges

Physicists create water tractor beam




The content herein, unless otherwise known to be public domain, are Copyright 1995-2014 - Space Media Network. All websites are published in Australia and are solely subject to Australian law and governed by Fair Use principals for news reporting and research purposes. AFP, UPI and IANS news wire stories are copyright Agence France-Presse, United Press International and Indo-Asia News Service. ESA news reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space Media Network on any Web page published or hosted by Space Media Network. Privacy Statement All images and articles appearing on Space Media Network have been edited or digitally altered in some way. Any requests to remove copyright material will be acted upon in a timely and appropriate manner. Any attempt to extort money from Space Media Network will be ignored and reported to Australian Law Enforcement Agencies as a potential case of financial fraud involving the use of a telephonic carriage device or postal service.