A How-To Guide To Making Bamboo-Structured Carbon Nanotubes
Cork, Ireland (SPX) Nov 22, 2007 Nanotechnology is area if science that has recently captured the attention of people all around the world. At the heart of the nanotechnology revolution are carbon nanotubes, amazing materials with astonishing properties. They have applications in most fields, with new possibilities emerging regularly. Carbon nanotubes are not as straightforward as many believe them to be. Of course there are the simple single walled carbon nanotubes and the more complex multi walled carbon nanotubes, but there are also carbon nanotubes in a number of other forms. By altering reaction conditions, carbon nanotubes also exist as carbon cages, carbon nanohorns and carbon nanotubes with a structure reminiscent of bamboo. Research work has just been released that provides a detailed analysis of the procedure for synthesising bamboo structured carbon nanotubes (BCNTs). The work by Zhonglai Li, Hongzhe Zhang, Joe Tobin, Michael A. Morris, Jieshan Qiu, Gary Attard and Justin D. Holmes from University College Cork, Dalian University of Technology and Cardiff University has been published in a special edition of the open access journal, AZoJono. This special edition of AZoJono features a number of papers from DESYGN-IT, the project seeking to secure Europe as the international scientific leader in the design, synthesis, growth, characterisation and application of nanotubes, nanowires and nanotube arrays for industrial technology. The present work looked at bamboo-structured carbon nanotubes with a narrow diameter distribution synthesized on bimetallic copper-molybdenum catalysts. Findings included the catalytic nanoparticles playing a key role in the synthesis of the nanotubes as well as acting as nucleation seeds for growth. Raman and thermal gravimetric analysis results showed that the quality of the BCNTs was dependent on the amount of copper present in the catalyst. These results challenge accepted wisdom that significant yields of CNTs can only be formed from catalytic CVD routes if first row or mid-row transition elements are used as catalysts. Related Links AZoNetwork Nano Technology News From SpaceMart.com Computer Chip Architecture, Technology and Manufacture
NASA Goddard Space Flight Center's Carbon Nanotube Manufacturing Technology Wins Nano 50 Award Greenbelt MD (SPX) Nov 16, 2007 NASA Goddard Space Flight Center in Greenbelt, Md. proudly announces that its method for manufacturing high-quality carbon nanotubes (CNT) has been named a winner in the third annual Nanotech Briefs Nano 50 awards in the Technology category. This award will be celebrated at the Nano 50 awards dinner November 14 at the NASA Tech Briefs National Nano Engineering Conference (NNEC 2007) in Boston, Mass. |
|
The content herein, unless otherwise known to be public domain, are Copyright Space.TV Corporation. AFP and UPI Wire Stories are copyright Agence France-Presse and United Press International. ESA Portal Reports are copyright European Space Agency. All NASA sourced material is public domain. Additional copyrights may apply in whole or part to other bona fide parties. Advertising does not imply endorsement, agreement or approval of any opinions, statements or information provided by Space.TV Corp on any Web page published or hosted by Space.TV Corp. Privacy Statement |